Higgs Cascade Decays to $\gamma\gamma$ + jet jet

Adam Martin

Yale University

New Horizons at Colliders, 2007

Motivation

- Models of BSM physics often contain EW singlets: a
- If $h \rightarrow aa$ dominates, Higgs phenomenology is <u>radically</u> different from SM
 - Unconventional signature: Cascade decay $h \rightarrow aa \rightarrow X, X \in SM$
 - Lower Higgs mass limits:
 - $h \to 4b$, $M_h > 110 \text{ GeV}$
 - $h \rightarrow \text{invisible}$, $M_h > 114 \text{ GeV}$
 - $h \rightarrow \gamma s$, light jets, $M_h > 82 \text{ GeV}$

$h \rightarrow aa \rightarrow \text{light jets, } \gamma \text{s}$

- Lower $M_h \Rightarrow$ Better agreement with PEW.
- What ingredients are needed for such an elusive Higgs?
- <u>How</u> would we find it at the LHC?

Necessary Ingredients: Minimal additions to SM (Chang, Fox, Weiner hep-ph:0603810)

Electroweak singlet a, coupled to Higgs

$$\frac{c}{\sqrt{2}}(a^2)(H^{\dagger}H) \rightarrow \frac{cv}{\sqrt{2}}ha^2$$

dominant decay mode for $c \gtrsim 0.03$, $M_h \lesssim 160 \text{ GeV}$

- Suppress a → fermion decays:
 - \blacksquare $m_a < 2m_\tau$: Can't resolve decay remnants
 - Discrete symmetry: $CP : a \rightarrow -a$

■ Introduce new vector-like fermions $Q_i \Rightarrow$ new interactions:

$$i \lambda \underline{a} \bar{Q}_i \gamma_5 Q_i + M_Q \bar{Q}_i Q_i$$

Induces agg and $a\gamma\gamma$ operators

a decays solely to $\gamma\gamma$, gg

Observing $h \rightarrow g$, γ s at the LHC

Key parameter:

$$BR(a \rightarrow \gamma \gamma) \ll 1.0$$

- Dominant mode $h \rightarrow 4g$: No chance
- Cleanest mode $h \rightarrow 4\gamma$: (Chang, Fox, Weiner hep-ph:0603810)
 - Small branching ratio → requires high luminosity (300fb⁻¹)
 - Very sensitive to photon efficiency
- Combined mode $h \rightarrow 2\gamma 2g$: Best of both worlds?

Production Modes

- Direct Production: $pp \rightarrow h \rightarrow aa$
 - Largest production cross section, BUT
 - Large, irreducible $\gamma \gamma$ + jets background: no good

Observation at the LHC

- Associated Production: $pp \rightarrow W^{\pm}h \rightarrow (\ell\nu)aa$
 - Smaller cross section, smaller background
 - Lepton and #_T reduce QCD background
 - Primary background comes from $W + \gamma \gamma + \text{jets}$
 - Fake γ , fake lepton backgrounds $\sim 10\%$

Details

- Look for peak in $M_{\gamma\gamma jj}$
- Mass range: 82 GeV $< M_h <$ 160 GeV, all m_a
- Assume $\mathcal{L} = 300 \text{ fb}^{-1}$, determine $BR(a \to \gamma \gamma)$ necessary for discovery
- Events generated with ALPGEN→PYTHIA→PGS
- Cuts
 - 1 lepton with $p_T > 20 \text{ GeV}, |\eta| < 2.5$
 - 2 γ with $p_T > 20 \text{ GeV}, |\eta| < 2.5$
 - 2^+ jets, $p_T > 20$ GeV, $|\eta| < 3.5$
 - $E_T > 25.0 \text{ GeV}$
 - $\Delta R \ge 0.4$ between all objects

■ Topological cuts improve S/\sqrt{B} :

Additional Cuts:

$$\Delta\phi_{\gamma\gamma} <$$
 1.5, $\Delta\phi_{jj} <$ 1.4, $|M_{\gamma\gamma} - M_{jj}| <$ 20.0 GeV

Exploit near collinearity of a decay products

\blacksquare BR \sim 0.02 sufficient

- Most sensitive at low-m_a, where topologial cuts work best
- Lowest *m_a* excluded by isolation cuts
- Comparable to $h \rightarrow 4\gamma$ mode for light M_h .
- Resolution $\delta M_h \sim 8 10 \text{ GeV}$

Contours: BR \geq 0.01, 0.02, 0.03, 0.05

- Important to consider alternative Higgs decays:
 - Avoid conventional detection
 - lighter Higgses ⇒ better PEW agreement
- h → aa → γs + jets is particularly sneaky and requires ingredients common to BSM physics
- New LHC Detection mode: $h \rightarrow 2\gamma 2g$ via associated production
- $\boxed{\textit{BR}(a \to \gamma \gamma) \sim 0.02}$ sufficient given $\mathcal{L} = 300~\text{fb}^{-1}$